Open quantum systems are harder to track than open classical systems

Author:

Warszawski Prahlad1ORCID,Wiseman Howard M.2ORCID

Affiliation:

1. Centre of Excellence in Engineered Quantum Systems (Australian Research Council), School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia

2. Centre for Quantum Computation and Communication Technology (Australian Research Council), Centre for Quantum Dynamics, Griffith University, Brisbane, Queensland 4111, Australia

Abstract

For a Markovian (in the strongest sense) open quantum system it is possible, by continuously monitoring the environment, to perfectly track the system; that is, to know the stochastically evolving pure state of the system without altering the master equation. In general, even for a system with a finite Hilbert space dimension D, the pure state trajectory will explore an infinite number of points in Hilbert space, meaning that the dimension K of the classical memory required for the tracking is infinite. However, Karasik and Wiseman [Phys. Rev. Lett., 106(2):020406, 2011] showed that tracking of a qubit (D=2) is always possible with a bit (K=2), and gave a heuristic argument implying that a finite K should be sufficient for any D, although beyond D=2 it would be necessary to have K>D. Our paper is concerned with rigorously investigating the relationship between D and Kmin, the smallest feasible K. We confirm the long-standing conjecture of Karasik and Wiseman that, for generic systems with D>2, Kmin>D, by a computational proof (via Hilbert Nullstellensatz certificates of infeasibility). That is, beyond D=2, D-dimensional open quantum systems are provably harder to track than D-dimensional open classical systems. We stress that this result allows complete freedom in choice of monitoring scheme, including adaptive monitoring which is, in general, necessary to implement a physically realizable ensemble (as it is known) of just K pure states. Moreover, we develop, and better justify, a new heuristic to guide our expectation of Kmin as a function of D, taking into account the number L of Lindblad operators as well as symmetries in the problem. The use of invariant subspace and Wigner symmetries (that we recently introduced elsewhere, [New J. Phys. https://doi.org/10.1088/1367-2630/ab14b2]) makes it tractable to conduct a numerical search, using the method of polynomial homotopy continuation, to find finite physically realizable ensembles in D=3. The results of this search support our heuristic. We thus have confidence in the most interesting feature of our heuristic: in the absence of symmetries, KminD2, implying a quadratic gap between the classical and quantum tracking problems. Explicit adaptive monitoring schemes that realize the discovered finite ensembles are obtained numerically, thus facilitating future experimental investigations.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3