Affiliation:
1. Department of Physics, Lancaster University, LA1 4YB, United Kingdom
2. RCQI, Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, Bratislava 84511, Slovakia
Abstract
In this paper we introduce a definition for conditional energy changes due to general quantum measurements, as the change in the conditional energy evaluated before, and after, the measurement process. By imposing minimal physical requirements on these conditional energies, we show that the most general expression for the conditional energy after the measurement is simply the expected value of the Hamiltonian given the post-measurement state. Conversely, the conditional energy before the measurement process is shown to be given by the real component of the weak value of the Hamiltonian. Our definition generalises well-known notions of distributions of internal energy change, such as that given by stochastic thermodynamics. By determining the conditional energy change of both system and measurement apparatus, we obtain the full conditional work statistics of quantum measurements, and show that this vanishes for all measurement outcomes if the measurement process conserves the total energy. Additionally, by incorporating the measurement process within a cyclic heat engine, we quantify the non-recoverable work due to measurements. This is shown to always be non-negative, thus satisfying the second law, and will be independent of the apparatus specifics for two classes of projective measurements.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献