Conjugates, Filters and Quantum Mechanics

Author:

Wilce Alexander1

Affiliation:

1. Department of Mathematics and Computer Science, Susquehanna University

Abstract

The Jordan structure of finite-dimensional quantum theory is derived, in a conspicuously easy way, from a few simple postulates concerning abstract probabilistic models (each defined by a set of basic measurements and a convex set of states). The key assumption is that each system A can be paired with an isomorphic conjugate system, A¯, by means of a non-signaling bipartite state ηA perfectly and uniformly correlating each basic measurement on A with its counterpart on A¯. In the case of a quantum-mechanical system associated with a complex Hilbert space H, the conjugate system is that associated with the conjugate Hilbert space H, and ηA corresponds to the standard maximally entangled EPR state on HH¯. A second ingredient is the notion of a reversible filter, that is, a probabilistically reversible process that independently attenuates the sensitivity of detectors associated with a measurement. In addition to offering more flexibility than most existing reconstructions of finite-dimensional quantum theory, the approach taken here has the advantage of not relying on any form of the ``no restriction" hypothesis. That is, it is not assumed that arbitrary effects are physically measurable, nor that arbitrary families of physically measurable effects summing to the unit effect, represent physically accessible observables. (An appendix shows how a version of Hardy's ``subpace axiom" can replace several assumptions native to this paper, although at the cost of disallowing superselection rules.)

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3