Affiliation:
1. Stanford Institute for Theoretical Physics, Stanford University, Stanford CA 94305 USA
2. Institute for Advanced Study, Princeton NJ 08540 USA
Abstract
We ask whether the knowledge of a single eigenstate of a local Hamiltonian is sufficient to uniquely determine the Hamiltonian. We present evidence that the answer is ``yes" for generic local Hamiltonians, given either the ground state or an excited eigenstate. In fact, knowing only the two-point equal-time correlation functions of local observables with respect to the eigenstate should generically be sufficient to exactly recover the Hamiltonian for finite-size systems, with numerical algorithms that run in a time that is polynomial in the system size. We also investigate the large-system limit, the sensitivity of the reconstruction to error, and the case when correlation functions are only known for observables on a fixed sub-region. Numerical demonstrations support the results for finite one-dimensional spin chains (though caution must be taken when extrapolating to infinite-size systems in higher dimensions). For the purpose of our analysis, we define the ``k-correlation spectrum" of a state, which reveals properties of local correlations in the state and may be of independent interest.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
93 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献