An efficient high dimensional quantum Schur transform

Author:

Krovi Hari1ORCID

Affiliation:

1. Quantum Engineering and Computing, Physical Sciences and Systems, Raytheon BBN Technologies, Cambridge, MA

Abstract

The Schur transform is a unitary operator that block diagonalizes the action of the symmetric and unitary groups on an n fold tensor product Vn of a vector space V of dimension d. Bacon, Chuang and Harrow [5] gave a quantum algorithm for this transform that is polynomial in n, d and logϵ1, where ϵ is the precision. In a footnote in Harrow's thesis [18], a brief description of how to make the algorithm of [5] polynomial in logd is given using the unitary group representation theory (however, this has not been explained in detail anywhere). In this article, we present a quantum algorithm for the Schur transform that is polynomial in n, logd and logϵ1 using a different approach. Specifically, we build this transform using the representation theory of the symmetric group and in this sense our technique can be considered a ''dual" algorithm to [5]. A novel feature of our algorithm is that we construct the quantum Fourier transform over the so called permutation modules, which could have other applications.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference42 articles.

1. Arne Alex, Matthias Kalus, Alan Huckleberry, and Jan von Delft. A numerical algorithm for the explicit calculation of su (n) and sl (n, c) clebsch-gordan coefficients. Journal of Mathematical Physics, 52 (2): 023507, 2011. 10.1063/1.3521562.

2. Robert Alicki, Slawomir Rudnicki, and Slawomir Sadowski. Symmetry properties of product states for the system of n n-level atoms. Journal of Mathematical Physics, 29: 1158-1162, 1988. 10.1063/1.527958.

3. D Bacon. Decoherence, control, and symmetry in quantum computers. PhD thesis, University of California, Berkeley, 2001.

4. Dave Bacon, Isaac L. Chuang, and Aram W. Harrow. Efficient quantum circuits for schur and clebsch-gordan transforms. Phys. Rev. Lett., 97: 170502, Oct 2006. 10.1103/PhysRevLett.97.170502. URL http://link.aps.org/doi/10.1103/PhysRevLett.97.170502.

5. Dave Bacon, Isaac L. Chuang, and Aram W. Harrow. The quantum schur and clebsch-gordan transforms: I. efficient qudit circuits. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '07, pages 1235-1244, Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 978-0-898716-24-5. URL http://dl.acm.org/citation.cfm?id=1283383.1283516.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Theory for Equivariant Quantum Neural Networks;PRX Quantum;2024-05-06

2. Testing of Hybrid Quantum-Classical K-Means for Nonlinear Noise Mitigation;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04

3. Reversing Unknown Qubit-Unitary Operation, Deterministically and Exactly;Physical Review Letters;2023-09-19

4. SnCQA: A hardware-efficient equivariant quantum convolutional circuit architecture;2023 IEEE International Conference on Quantum Computing and Engineering (QCE);2023-09-17

5. Testing identity of collections of quantum states: sample complexity analysis;Quantum;2023-09-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3