Abstract
We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let f be an m-bit Boolean function and consider an n-bit function F obtained by applying f to conjunctions of possibly overlapping subsets of n variables. If f has quantum query complexity Q(f), we give an algorithm for evaluating F using O~(Q(f)⋅n) quantum queries. This improves on the bound of O(Q(f)⋅n) that follows by treating each conjunction independently, and our bound is tight for worst-case choices of f. Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of f.By recursively applying our composition theorems, we obtain a nearly optimal O~(n1−2−d) upper bound on the quantum query complexity and approximate degree of linear-size depth-d AC0 circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC0 circuits.As an additional consequence, we show that AC0∘⊕ circuits of depth d+1 require size Ω~(n1/(1−2−d))≥ω(n1+2−d) to compute the Inner Product function even on average. The previous best size lower bound was Ω(n1+4−(d+1)) and only held in the worst case (Cheraghchi et al., JCSS 2018).
Funder
National Science Foundation
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Approximate Degree in Classical and Quantum Computing;Foundations and Trends® in Theoretical Computer Science;2022