Quantum Advantage for Shared Randomness Generation

Author:

Guha Tamal1,Alimuddin Mir2,Rout Sumit3,Mukherjee Amit4,Bhattacharya Some Sankar5,Banik Manik2

Affiliation:

1. Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India.

2. School of Physics, IISER Thiruvanathapuram, Vithura, Kerala 695551, India.

3. International Centre for Theory of Quantum Technologies (ICTQT), University of Gdańsk, 80-308 Gdańsk, Poland.

4. S.N. Bose National Center for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098, India.

5. Department of Computer Science, The University of Hong Kong, Pokfulam Road, Hong Kong.

Abstract

Sharing correlated random variables is a resource for a number of information theoretic tasks such as privacy amplification, simultaneous message passing, secret sharing and many more. In this article, we show that to establish such a resource called shared randomness, quantum systems provide an advantage over their classical counterpart. Precisely, we show that appropriate albeit fixed measurements on a shared two-qubit state can generate correlations which cannot be obtained from any possible state on two classical bits. In a resource theoretic set-up, this feature of quantum systems can be interpreted as an advantage in winning a two players co-operative game, which we call the `non-monopolize social subsidy' game. It turns out that the quantum states leading to the desired advantage must possess non-classicality in the form of quantum discord. On the other hand, while distributing such sources of shared randomness between two parties via noisy channels, quantum channels with zero capacity as well as with classical capacity strictly less than unity perform more efficiently than the perfect classical channel. Protocols presented here are noise-robust and hence should be realizable with state-of-the-art quantum devices.

Funder

CSIR, Governement of India

Foundation for Polish Science

National Natural Science Foundation of China

Foundational Questions Institute

Hong Kong Research Grant Council

John Templeton Foundation

INSPIRE Faculty Fellowship, DST, Government of India

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3