Affiliation:
1. Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
2. Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.
Abstract
We analyze bipartite matrices and linear maps between matrix algebras, which are respectively, invariant and covariant, under the diagonal unitary and orthogonal groups' actions. By presenting an expansive list of examples from the literature, which includes notable entries like the Diagonal Symmetric states and the Choi-type maps, we show that this class of matrices (and maps) encompasses a wide variety of scenarios, thereby unifying their study. We examine their linear algebraic structure and investigate different notions of positivity through their convex conic manifestations. In particular, we generalize the well-known cone of completely positive matrices to that of triplewise completely positive matrices and connect it to the separability of the relevant invariant states (or the entanglement breaking property of the corresponding quantum channels). For linear maps, we provide explicit characterizations of the stated covariance in terms of their Kraus, Stinespring, and Choi representations, and systematically analyze the usual properties of positivity, decomposability, complete positivity, and the like. We also describe the invariant subspaces of these maps and use their structure to provide necessary and sufficient conditions for separability of the associated invariant bipartite states.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Reference67 articles.
1. Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices. World Scientific, 2003. doi:10.1142/5273.
2. R. Bhatia. Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, 2015. URL: https://press.princeton.edu/books/paperback/9780691168258/positive-definite-matrices.
3. Andreas Bluhm and Ion Nechita. Compatibility of quantum measurements and inclusion constants for the matrix jewel. SIAM Journal on Applied Algebra and Geometry, 4(2):255–296, January 2020. doi:10.1137/19m123837x.
4. David D. Bremner. On the complexity of vertex and facet enumeration for complex polytopes. Ph.D. thesis, School of Computer Science, McGill University, Monréal, Canada, 1997. URL: https://dl.acm.org/doi/book/10.5555/930378.
5. K. Chen and L.-A. Wu. A matrix realignment method for recognizing entanglement. Quantum Information and Computation, 3(3):193–202, May 2003. doi:10.26421/qic3.3-1.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献