Opinion: Democratizing Spin Qubits

Author:

Tahan Charles1ORCID

Affiliation:

1. Laboratory for Physical Sciences, 8050 Greenmead Rd, College Park, MD 20740

Abstract

I've been building Powerpoint-based quantum computers with electron spins in silicon for 20 years. Unfortunately, real-life-based quantum dot quantum computers are harder to implement. Materials, fabrication, and control challenges still impede progress. The way to accelerate discovery is to make and measure more qubits. Here I discuss separating the qubit realization and testing circuitry from the materials science and on-chip fabrication that will ultimately be necessary. This approach should allow us, in the shorter term, to characterize wafers non-invasively for their qubit-relevant properties, to make small qubit systems on various different materials with little extra cost, and even to test spin-qubit to superconducting cavity entanglement protocols where the best possible cavity quality is preserved. Such a testbed can advance the materials science of semiconductor quantum information devices and enable small quantum computers. This article may also be useful as a light and light-hearted introduction to quantum dot spin qubits.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference80 articles.

1. R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K. Vandersypen. Spins in few-electron quantum dots. Reviews of Modern Physics, 79 (4): 1217–1265, October 2007. 10.1103/RevModPhys.79.1217.

2. Matthew G. Borselli, Kevin Eng, Richard S. Ross, Thomas M. Hazard, Kevin S. Holabird, Biqin Huang, Andrey A. Kiselev, Peter W. Deelman, Leslie D. Warren, Ivan Milosavljevic, Adele E. Schmitz, Marko Sokolich, Mark F. Gyure, and Andrew T. Hunter. Undoped accumulation-mode Si/SiGe quantum dots. Nanotechnology, 26 (375202), August 2015. https://doi.org/10.1088/0957-4484/26/37/375202.

3. D. M. Zajac, T. M. Hazard, X. Mi, K. Wang, and J. R. Petta. A reconfigurable gate architecture for Si/SiGe quantum dots. Applied Physics Letters, 106 (22): 223507, June 2015. ISSN 0003-6951, 1077-3118. 10.1063/1.4922249.

4. M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang, J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello, and A. S. Dzurak. A Two Qubit Logic Gate in Silicon. Nature, 526 (7573): 410–414, October 2015. ISSN 0028-0836, 1476-4687. 10.1038/nature15263.

5. M. D. Reed, B. M. Maune, R. W. Andrews, M. G. Borselli, K. Eng, M. P. Jura, A. A. Kiselev, T. D. Ladd, S. T. Merkel, I. Milosavljevic, E. J. Pritchett, M. T. Rakher, R. S. Ross, A. E. Schmitz, A. Smith, J. A. Wright, M. F. Gyure, and A. T. Hunter. Reduced sensitivity to charge noise in semiconductor spin qubits via symmetric operation. Phys. Rev. Lett., 116 (11): 110402, March 2016. 10.1103/PhysRevLett.116.110402.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Democratization of quantum technologies;Quantum Science and Technology;2023-02-07

2. Review of performance metrics of spin qubits in gated semiconducting nanostructures;Nature Reviews Physics;2022-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3