Entangled resource for interfacing single- and dual-rail optical qubits

Author:

Drahi David1,Sychev Demid V.23,Pirov Khurram K.4,Sazhina Ekaterina A.24,Novikov Valeriy A.5,Walmsley Ian A.16,Lvovsky A. I.127

Affiliation:

1. Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK

2. Russian Quantum Center, 100 Novaya St., Skolkovo, Moscow 143025

3. Moscow State Pedagogical University, M. Pirogovskaya Street 29, Moscow 119991, Russia

4. Moscow Institute of Physics and Technology, 141700 Dolgoprudny

5. Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark

6. Imperial College London, Exhibition Road, London, SW7 2AZ, UK

7. P. N. Lebedev Physics Institute, Leninskiy prospect 53, Moscow 119991, Russia

Abstract

Today's most widely used method of encoding quantum information in optical qubits is the dual-rail basis, often carried out through the polarisation of a single photon. On the other hand, many stationary carriers of quantum information – such as atoms – couple to light via the single-rail encoding in which the qubit is encoded in the number of photons. As such, interconversion between the two encodings is paramount in order to achieve cohesive quantum networks. In this paper, we demonstrate this by generating an entangled resource between the two encodings and using it to teleport a dual-rail qubit onto its single-rail counterpart. This work completes the set of tools necessary for the interconversion between the three primary encodings of the qubit in the optical field: single-rail, dual-rail and continuous-variable.

Funder

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference32 articles.

1. Reed W Andrews, Robert W Peterson, Tom P Purdy, Katarina Cicak, Raymond W Simmonds, Cindy A Regal, and Konrad W Lehnert. Bidirectional and efficient conversion between microwave and optical light. Nature Physics, 10 (4): 321, 2014. 10.1038/nphys2911.

2. Markus Aspelmeyer, Tobias J Kippenberg, and Florian Marquardt. Cavity optomechanics. Reviews of Modern Physics, 86 (4): 1391, 2014. 10.1103/RevModPhys.86.1391.

3. David Awschalom, Karl K. Berggren, Hannes Bernien, Sunil Bhave, Lincoln D. Carr, Paul Davids, Sophia E. Economou, Dirk Englund, Andrei Faraon, Martin Fejer, Saikat Guha, Martin V. Gustafsson, Evelyn Hu, Liang Jiang, Jungsang Kim, Boris Korzh, Prem Kumar, Paul G. Kwiat, Marko Lončar, Mikhail D. Lukin, David A.B. Miller, Christopher Monroe, Sae Woo Nam, Prineha Narang, Jason S. Orcutt, Michael G. Raymer, Amir H. Safavi-Naeini, Maria Spiropulu, Kartik Srinivasan, Shuo Sun, Jelena Vučković, Edo Waks, Ronald Walsworth, Andrew M. Weiner, and Zheshen Zhang. Development of quantum interconnects (quics) for next-generation information technologies. PRX Quantum, 2: 017002, Feb 2021. 10.1103/PRXQuantum.2.017002.

4. S A Babichev, J Ries, and A I Lvovsky. Quantum scissors: teleportation of single-mode optical states by means of a nonlocal single photon. EPL (Europhysics Letters), 64 (1): 1, 2003. 10.1209/epl/i2003-00504-y.

5. Stefanie Barz, Gunther Cronenberg, Anton Zeilinger, and Philip Walther. Heralded generation of entangled photon pairs. Nature Photonics, 4 (8): 553, 2010. 10.1038/nphoton.2010.156.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3