Quantum one-time tables for unconditionally secure qubit-commitment

Author:

Lie Seok Hyung1,Kwon Hyukjoon2,Kim M. S.23,Jeong Hyunseok1

Affiliation:

1. Department of Physics and Astronomy, Seoul National University, Seoul, 151-742, Korea

2. QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom

3. Korea Institute for Advanced Study, Seoul, 02455, Korea

Abstract

The commodity-based cryptography is an alternative approach to realize conventionally impossible cryptographic primitives such as unconditionally secure bit-commitment by consuming pre-established correlation between distrustful participants. A unit of such classical correlation is known as the one-time table (OTT). In this paper, we introduce a new example besides quantum key distribution in which quantum correlation is useful for cryptography. We propose a scheme for unconditionally secure qubit-commitment, a quantum cryptographic primitive forbidden by the recently proven no-masking theorem in the standard model, based on the consumption of the quantum generalization of the OTT, the bipartite quantum state we namedquantum one-time tables(QOTT). The construction of the QOTT is based on the newly analyzed internal structure of quantum masker and the quantum secret sharing schemes. Our qubit-commitment scheme is shown to be universally composable. We propose to measure the randomness cost of preparing a (Q)OTT in terms of its entropy, and show that the QOTT with superdense coding can increase the security level with half the cost of OTTs for unconditionally secure bit-commitment. The QOTT exemplifies an operational setting where neither maximally classically correlated state nor maximally entangled state, but rather a well-structured partially entangled mixed state is more valuable resource.

Funder

National Research Foundation of Korea

Korea Institute of Science and Technology Institutional Program

Ministry of Science and ICT of Korea

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. No-masking theorem for observables;Physical Review A;2024-08-15

2. Quantifying the information distribution of quantum information masking;Quantum Information Processing;2023-07-14

3. Delocalized and dynamical catalytic randomness and information flow;Physical Review A;2023-04-24

4. 量子信息掩蔽;Acta Optica Sinica;2022

5. Unconditionally Secure Relativistic Quantum Qubit Commitment;Applied Sciences;2021-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3