Pauli error estimation via Population Recovery

Author:

Flammia Steven T.12,O'Donnell Ryan3

Affiliation:

1. AWS Center for Quantum Computing, USA

2. IQIM, California Institute of Technology, USA

3. Computer Science Department, Carnegie Mellon University, USA

Abstract

Motivated by estimation of quantum noise models, we study the problem of learning a Pauli channel, or more generally the Pauli error rates of an arbitrary channel. By employing a novel reduction to the "Population Recovery" problem, we give an extremely simple algorithm that learns the Pauli error rates of an n-qubit channel to precision ϵ in ℓ∞ using just O(1/ϵ2)log⁡(n/ϵ) applications of the channel. This is optimal up to the logarithmic factors. Our algorithm uses only unentangled state preparation and measurements, and the post-measurement classical runtime is just an O(1/ϵ) factor larger than the measurement data size. It is also impervious to a limited model of measurement noise where heralded measurement failures occur independently with probability ≤1/4.We then consider the case where the noise channel is close to the identity, meaning that the no-error outcome occurs with probability 1−η. In the regime of small η we extend our algorithm to achieve multiplicative precision 1±ϵ (i.e., additive precision ϵη) using just O(1ϵ2η)log⁡(n/ϵ) applications of the channel.

Funder

US Army Research Office

US National Science Foundation

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fidelity-dissipation relations in quantum gates;Physical Review Research;2024-08-28

2. Learning Quantum Processes and Hamiltonians via the Pauli Transfer Matrix;ACM Transactions on Quantum Computing;2024-06-17

3. Learning Shallow Quantum Circuits;Proceedings of the 56th Annual ACM Symposium on Theory of Computing;2024-06-10

4. Tight Bounds on Pauli Channel Learning without Entanglement;Physical Review Letters;2024-05-01

5. Classical shadows with Pauli-invariant unitary ensembles;npj Quantum Information;2024-01-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3