Borromean states in discrete-time quantum walks

Author:

Markiewicz Marcin1,Karczewski Marcin1,Kurzynski Pawel2

Affiliation:

1. International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdansk, Poland

2. Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland

Abstract

In the right conditions, removing one particle from a multipartite bound state can make it fall apart. This feature, known as the "Borromean property", has been recently demonstrated experimentally in Efimov states. One could expect that such peculiar behavior should be linked with the presence of strong inter-particle correlations. However, any exploration of this connection is hindered by the complexity of the physical systems exhibiting the Borromean property. To overcome this problem, we introduce a simple dynamical toy model based on a discrete-time quantum walk of many interacting particles. We show that the particles described by it need to exhibit the Greenberger-Horne-Zeillinger (GHZ) entanglement to form Borromean bound states. As this type of entanglement is very prone to particle losses, our work demonstrates an intuitive link between correlations and Borromean properties of the system. Moreover, we discuss our findings in the context of the formation of composite particles.

Funder

Ministry of Science and Higher Education in Poland

Foundation for Polish Science

National Science Center in Poland

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3