Restoring Heisenberg scaling in noisy quantum metrology by monitoring the environment

Author:

Albarelli Francesco12ORCID,Rossi Matteo A. C.13ORCID,Tamascelli Dario1ORCID,Genoni Marco G.1ORCID

Affiliation:

1. Quantum Technology Lab, Dipartimento di Fisica ``Aldo Pontremoli'', Università degli Studi di Milano, IT-20133, Milan, Italy

2. Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

3. QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland

Abstract

We study quantum frequency estimation for N qubits subjected to independent Markovian noise, via strategies based on time-continuous monitoring of the environment. Both physical intuition and an extended convexity property of the quantum Fisher information (QFI) suggest that these strategies are more effective than the standard ones based on the measurement of the unconditional state after the noisy evolution. Here we focus on initial GHZ states and on parallel or transverse noise. For parallel noise, i.e. dephasing, we show that perfectly efficient time-continuous photo-detection allows to recover the unitary (noiseless) QFI, and thus to obtain a Heisenberg scaling for every value of the monitoring time. For finite detection efficiency, one falls back to the noisy standard quantum limit scaling, but with a constant enhancement due to an effective reduced dephasing. Also in the transverse noise case we obtain that the Heisenberg scaling is recovered for perfectly efficient detectors, and we find that both homodyne and photo-detection based strategies are optimal. For finite detectors efficiency, our numerical simulations show that, as expected, an enhancement can be observed, but we cannot give any conclusive statement regarding the scaling. We finally describe in detail the stable and compact numerical algorithm that we have developed in order to evaluate the precision of such time-continuous estimation strategies, and that may find application in other quantum metrology schemes.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3