Affiliation:
1. Google, Santa Barbara, CA 93117, USA
Abstract
We improve the number of T gates needed to perform an n-bit adder from 8n+O(1) to 4n+O(1). We do so via a "temporary logical-AND" construction which uses four T gates to store the logical-AND of two qubits into an ancilla and zero T gates to later erase the ancilla. This construction is equivalent to one by Jones, except that our framing makes it clear that the technique is far more widely applicable than previously realized. Temporary logical-ANDs can be applied to integer arithmetic, modular arithmetic, rotation synthesis, the quantum Fourier transform, Shor's algorithm, Grover oracles, and many other circuits. Because T gates dominate the cost of quantum computation based on the surface code, and temporary logical-ANDs are widely applicable, this represents a significant reduction in projected costs of quantum computation. In addition to our n-bit adder, we present an n-bit controlled adder circuit with T-count of 8n+O(1), a temporary adder that can be computed for the same cost as the normal adder but whose result can be kept until it is later uncomputed without using T gates, and discuss some other constructions whose T-count is improved by the temporary logical-AND.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Reference23 articles.
1. M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 32 (6): 818-830, jun 2013. 10.1109/tcad.2013.2244643.
2. Ryan Babbush, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Alexandru Paler, Austin Fowler, and Hartmut Neven. Encoding electronic spectra in quantum circuits with linear T complexity. arXiv preprint arXiv:1805.03662, 2018. URL https://arxiv.org/abs/1805.03662.
3. Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical Review A, 52 (5): 3457-3467, nov 1995. 10.1103/physreva.52.3457.
4. R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508: 500-503, 2014. 10.1038/nature13171. arXiv:1402.4848.
5. S. B. Bravyi and A. Yu. Kitaev. Quantum codes on a lattice with boundary. arXiv:quant-ph/9811052, 1998. URL https://arxiv.org/abs/quant-ph/9811052.
Cited by
131 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献