Fundamental thresholds of realistic quantum error correction circuits from classical spin models

Author:

Vodola Davide12,Rispler Manuel3,Kim Seyong4,Müller Markus56

Affiliation:

1. Dipartimento di Fisica e Astronomia ``Augusto Righi'' dell'Università di Bologna, I-40127 Bologna, Italy

2. INFN, Sezione di Bologna, I-40127 Bologna, Italy

3. QuTech, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands

4. Department of Physics, Sejong University, 05006 Seoul, Republic of Korea

5. Institute for Theoretical Nanoelectronics (PGI-2), Forschungszentrum Jülich, 52428 Jülich, Germany

6. Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany

Abstract

Mapping the decoding of quantum error correcting (QEC) codes to classical disordered statistical mechanics models allows one to determine critical error thresholds of QEC codes under phenomenological noise models. Here, we extend this mapping to admit realistic, multi-parameter noise models of faulty QEC circuits, derive the associated strongly correlated classical spin models, and illustrate this approach for a quantum repetition code with faulty stabilizer readout circuits. We use Monte-Carlo simulations to study the resulting phase diagram and benchmark our results against a minimum-weight perfect matching decoder. The presented method provides an avenue to assess fundamental thresholds of QEC circuits, independent of specific decoding strategies, and can thereby help guiding the development of near-term QEC hardware.

Funder

National Research Foundation of Korea

European Research Council

European Commission

US A.R.O.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exact results on finite size corrections for surface codes tailored to biased noise;Quantum;2024-09-11

2. IoT-based Digital Twin Braiding Machinery for Defect Detection;2023 International Conference on Emerging Research in Computational Science (ICERCS);2023-12-07

3. Optimal Thresholds for Fracton Codes and Random Spin Models with Subsystem Symmetry;Physical Review Letters;2022-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3