Affiliation:
1. Laboratoire d'Information Quantique, Université libre de Bruxelles (ULB), Belgium
Abstract
According to the entropy accumulation theorem, proving the unconditional security of a device-independent quantum key distribution protocol reduces to deriving tradeoff functions, i.e., bounds on the single-round von Neumann entropy of the raw key as a function of Bell linear functionals, conditioned on an eavesdropper's quantum side information. In this work, we describe how the conditional entropy can be bounded in the 2-input/2-output setting, where the analysis can be reduced to qubit systems, by combining entropy bounds for variants of the well-known BB84 protocol with quantum constraints on qubit operators on the bipartite system shared by Alice and Bob. The approach gives analytic bounds on the entropy, or semi-analytic ones in reasonable computation time, which are typically close to optimal. We illustrate the approach on a variant of the device-independent CHSH QKD protocol where both bases are used to generate the key as well as on a more refined analysis of the original single-basis variant with respect to losses. We obtain in particular a detection efficiency threshold slightly below 80.26%, within reach of current experimental capabilities.
Funder
EU Quantum Flagship project QRANGE
F.R.S-FNRS
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献