Quantum agents in the Gym: a variational quantum algorithm for deep Q-learning

Author:

Skolik Andrea12,Jerbi Sofiene3,Dunjko Vedran1

Affiliation:

1. Leiden University, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands

2. Volkswagen Data:Lab, Ungererstraße 69, 80805 Munich, Germany

3. Institute for Theoretical Physics, University of Innsbruck, Technikerstr. 21a, A-6020 Innsbruck, Austria

Abstract

Quantum machine learning (QML) has been identified as one of the key fields that could reap advantages from near-term quantum devices, next to optimization and quantum chemistry. Research in this area has focused primarily on variational quantum algorithms (VQAs), and several proposals to enhance supervised, unsupervised and reinforcement learning (RL) algorithms with VQAs have been put forward. Out of the three, RL is the least studied and it is still an open question whether VQAs can be competitive with state-of-the-art classical algorithms based on neural networks (NNs) even on simple benchmark tasks. In this work, we introduce a training method for parametrized quantum circuits (PQCs) that can be used to solve RL tasks for discrete and continuous state spaces based on the deep Q-learning algorithm. We investigate which architectural choices for quantum Q-learning agents are most important for successfully solving certain types of environments by performing ablation studies for a number of different data encoding and readout strategies. We provide insight into why the performance of a VQA-based Q-learning algorithm crucially depends on the observables of the quantum model and show how to choose suitable observables based on the learning task at hand. To compare our model against the classical DQN algorithm, we perform an extensive hyperparameter search of PQCs and NNs with varying numbers of parameters. We confirm that similar to results in classical literature, the architectural choices and hyperparameters contribute more to the agents' success in a RL setting than the number of parameters used in the model. Finally, we show when recent separation results between classical and quantum agents for policy gradient RL can be extended to inferring optimal Q-values in restricted families of environments.

Funder

Dutch Research Council

European Union’s Horizon 2020 research and innovation programme

Austrian Science Fund

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3