Fast Stabiliser Simulation with Quadratic Form Expansions

Author:

Beaudrap Niel de1,Herbert Steven23

Affiliation:

1. Department of Informatics, University of Sussex, UK

2. Quantinuum (Cambridge Quantum), Terrington House, 13-15 Hills Rd, Cambridge, CB2 1NL, UK

3. Department of Computer Science and Technology, University of Cambridge, UK

Abstract

This paper builds on the idea of simulating stabiliser circuits through transformations of {quadratic form expansions}. This is a representation of a quantum state which specifies a formula for the expansion in the standard basis, describing real and imaginary relative phases using a degree-2 polynomial over the integers. We show how, with deft management of the quadratic form expansion representation, we may simulate individual stabiliser operations in O(n2) time matching the overall complexity of other simulation techniques \cite{Aaronson2004,Anders2006,Bravyi2016}. Our techniques provide economies of scale in the time to simulate simultaneous measurements of all (or nearly all) qubits in the standard basis. Our techniques also allow single-qubit measurements with deterministic outcomes to be simulated in constant time. We also describe throughout how these bounds may be tightened when the expansion of the state in the standard basis has relatively few terms (has low `rank'), or can be specified by sparse matrices. Specifically, this allows us to simulate a `local' stabiliser syndrome measurement in time O(n), for a stabiliser code subject to Pauli noise --- matching what is possible using techniques developed by Gidney \cite{gidney2021stim} without the need to store which operations have thus far been simulated.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Symbolic Synthesis of Clifford Circuits and Beyond;Electronic Proceedings in Theoretical Computer Science;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3