Affiliation:
1. Institute for Nuclear Research, P. O. Box 51, H-4001 Debrecen, Hungary
2. MTA Atomki Lendület Quantum Correlations Research Group, Institute for Nuclear Research, P. O. Box 51, H-4001 Debrecen, Hungary
Abstract
In this paper we study the Platonic Bell inequalities for all possible dimensions. There are five Platonic solids in three dimensions, but there are also solids with Platonic properties (also known as regular polyhedra) in four and higher dimensions. The concept of Platonic Bell inequalities in the three-dimensional Euclidean space was introduced by Tavakoli and Gisin [Quantum 4, 293 (2020)]. For any three-dimensional Platonic solid, an arrangement of projective measurements is associated where the measurement directions point toward the vertices of the solids. For the higher dimensional regular polyhedra, we use the correspondence of the vertices to the measurements in the abstract Tsirelson space. We give a remarkably simple formula for the quantum violation of all the Platonic Bell inequalities, which we prove to attain the maximum possible quantum violation of the Bell inequalities, i.e. the Tsirelson bound. To construct Bell inequalities with a large number of settings, it is crucial to compute the local bound efficiently. In general, the computation time required to compute the local bound grows exponentially with the number of measurement settings. We find a method to compute the local bound exactly for any bipartite two-outcome Bell inequality, where the dependence becomes polynomial whose degree is the rank of the Bell matrix. To show that this algorithm can be used in practice, we compute the local bound of a 300-setting Platonic Bell inequality based on the halved dodecaplex. In addition, we use a diagonal modification of the original Platonic Bell matrix to increase the ratio of quantum to local bound. In this way, we obtain a four-dimensional 60-setting Platonic Bell inequality based on the halved tetraplex for which the quantum violation exceeds the 2 ratio.
Funder
EU (QuantERA eDICT) and the National Research, Development and Innovation Office NKFIH
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献