Model predictive control for robust quantum state preparation

Author:

Goldschmidt Andy J.1ORCID,DuBois Jonathan L.2ORCID,Brunton Steven L.3ORCID,Kutz J. Nathan4ORCID

Affiliation:

1. Department of Physics, University of Washington, Seattle, WA 98195

2. Lawrence Livermore National Laboratory, Livermore, CA 94550

3. Department of Mechanical Engineering, University of Washington, Seattle, WA 98195

4. Department of Applied Mathematics, University of Washington, Seattle, WA 98195

Abstract

A critical engineering challenge in quantum technology is the accurate control of quantum dynamics. Model-based methods for optimal control have been shown to be highly effective when theory and experiment closely match. Consequently, realizing high-fidelity quantum processes with model-based control requires careful device characterization. In quantum processors based on cold atoms, the Hamiltonian can be well-characterized. For superconducting qubits operating at milli-Kelvin temperatures, the Hamiltonian is not as well-characterized. Unaccounted for physics (i.e., mode discrepancy), coherent disturbances, and increased noise compromise traditional model-based control. This work introduces model predictive control (MPC) for quantum control applications. MPC is a closed-loop optimization framework that (i) inherits a natural degree of disturbance rejection by incorporating measurement feedback, (ii) utilizes finite-horizon model-based optimizations to control complex multi-input, multi-output dynamical systems under state and input constraints, and (iii) is flexible enough to develop synergistically alongside other modern control strategies. We show how MPC can be used to generate practical optimized control sequences in representative examples of quantum state preparation. Specifically, we demonstrate for a qubit, a weakly-anharmonic qubit, and a system undergoing crosstalk, that MPC can realize successful model-based control even when the model is inadequate. These examples showcase why MPC is an important addition to the quantum engineering control suite.

Funder

National Science Foundation

Army Research Office

National Science Foundation AI Institute in Dynamic Systems

National Nuclear Security Administration Advanced Simulation and Computing Beyond Moore’s Law program

Lawrence Livermore National Laboratory Laboratory Directed Research and Development

US Department of Energy Lawrence Livermore National Laboratory

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3