Work and Fluctuations: Coherent vs. Incoherent Ergotropy Extraction

Author:

Łobejko Marcin12ORCID

Affiliation:

1. Institute of Theoretical Physics and Astrophysics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdansk, Poland

2. International Centre for Theory of Quantum Technologies, University of Gdańsk, 80-308 Gdańsk, Poland

Abstract

We consider a quasi-probability distribution of work for an isolated quantum system coupled to the energy-storage device given by the ideal weight. Specifically, we analyze a trade-off between changes in average energy and changes in weight's variance, where work is extracted from the coherent and incoherent ergotropy of the system. Primarily, we reveal that the extraction of positive coherent ergotropy can be accompanied by the reduction of work fluctuations (quantified by a variance loss) by utilizing the non-classical states of a work reservoir. On the other hand, we derive a fluctuation-decoherence relation for a quantum weight, defining a lower bound of its energy dispersion via a dumping function of the coherent contribution to the system's ergotropy. Specifically, it reveals that unlocking ergotropy from coherences results in high fluctuations, which diverge when the total coherent energy is unlocked. The proposed autonomous protocol of work extraction shows a significant difference between extracting coherent and incoherent ergotropy: The former can decrease the variance, but its absolute value diverges if more and more energy is extracted, whereas for the latter, the gain is always non-negative, but a total (incoherent) ergotropy can be extracted with finite work fluctuations. Furthermore, we present the framework in terms of the introduced quasi-probability distribution, which has a physical interpretation of its cumulants, is free from the invasive nature of measurements, and reduces to the two-point measurement scheme (TPM) for incoherent states. Finally, we analytically solve the work-variance trade-off for a qubit, explicitly revealing all the above quantum and classical regimes.

Funder

National Science Centre

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3