Coplanar Antenna Design for Microwave Entangled Signals Propagating in Open Air

Author:

Gonzalez-Raya Tasio12ORCID,Sanz Mikel1234ORCID

Affiliation:

1. Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain

2. EHU Quantum Center, University of the Basque Country UPV/EHU

3. Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, 48009 Bilbao, Basque Country, Spain

4. IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

Abstract

Open-air microwave quantum communication and metrology protocols must be able to transfer quantum resources from a cryostat, where they are created, to an environment dominated by thermal noise. Indeed, the states carrying such quantum resources are generated in a cryostat characterized by a temperature Tin≃50 mK and an intrinsic impedance Zin=50Ω. Then, an antenna-like device is required to transfer them with minimal losses into open air, characterized by an intrinsic impedance of Zout=377Ω and a temperature Tout≃300 K. This device accomplishes a smooth impedance matching between the cryostat and the open air. Here, we study the transmission of two-mode squeezed thermal states, developing a technique to design the optimal shape of a coplanar antenna to preserve the entanglement. Based on a numerical optimization procedure, we find the optimal shape of the impedance, and we propose a functional ansatz to qualitatively describe this shape. Additionally, this study reveals that the reflectivity of the antenna is very sensitive to this shape, so that small changes dramatically affect the outcoming entanglement, which could have been a limitation in previous experiments employing commercial antennae. This work is relevant in the fields of microwave quantum sensing and quantum metrology with special application to the development of the quantum radar, as well as any open-air microwave quantum communication protocol.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3