On contraction coefficients, partial orders and approximation of capacities for quantum channels

Author:

Hirche Christoph1,Rouzé Cambyse23,Stilck França Daniel23

Affiliation:

1. QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

2. Department of Mathematics, Technische Universität München, 85748 Garching, Germany

3. Munich Center for Quantum Science and Technology (MCQST), München, Germany

Abstract

The data processing inequality is the most basic requirement for any meaningful measure of information. It essentially states that distinguishability measures between states decrease if we apply a quantum channel and is the centerpiece of many results in information theory. Moreover, it justifies the operational interpretation of most entropic quantities. In this work, we revisit the notion of contraction coefficients of quantum channels, which provide sharper and specialized versions of the data processing inequality. A concept closely related to data processing is partial orders on quantum channels. First, we discuss several quantum extensions of the well-known less noisy ordering and relate them to contraction coefficients. We further define approximate versions of the partial orders and show how they can give strengthened and conceptually simple proofs of several results on approximating capacities. Moreover, we investigate the relation to other partial orders in the literature and their properties, particularly with regard to tensorization. We then examine the relation between contraction coefficients with other properties of quantum channels such as hypercontractivity. Next, we extend the framework of contraction coefficients to general f-divergences and prove several structural results. Finally, we consider two important classes of quantum channels, namely Weyl-covariant and bosonic Gaussian channels. For those, we determine new contraction coefficients and relations for various partial orders.

Funder

VILLUM FONDEN

European Research Council

Deutsche Forschungsgemeinschaf

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3