Events in quantum mechanics are maximally non-absolute

Author:

Moreno George12,Nery Ranieri1,Duarte Cristhiano13,Chaves Rafael14

Affiliation:

1. International Institute of Physics, Federal University of Rio Grande do Norte, 59078-970, Natal, Brazil

2. Departamento de Computação, Universidade Federal Rural de Pernambuco, 52171-900, Recife, Pernambuco, Brazil

3. School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

4. School of Science and Technology, Federal University of Rio Grande do Norte, Natal, Brazil

Abstract

The notorious quantum measurement problem brings out the difficulty to reconcile two quantum postulates: the unitary evolution of closed quantum systems and the wave-function collapse after a measurement. This problematics is particularly highlighted in the Wigner's friend thought experiment, where the mismatch between unitary evolution and measurement collapse leads to conflicting quantum descriptions for different observers. A recent no-go theorem has established that the (quantum) statistics arising from an extended Wigner's friend scenario is incompatible when one try to hold together three innocuous assumptions, namely no-superdeterminism, parameter independence and absoluteness of observed events. Building on this extended scenario, we introduce two novel measures of non-absoluteness of events. The first is based on the EPR2 decomposition, and the second involves the relaxation of the absoluteness hypothesis assumed in the aforementioned no-go theorem. To prove that quantum correlations can be maximally non-absolute according to both quantifiers, we show that chained Bell inequalities (and relaxations thereof) are also valid constraints for Wigner's experiment.

Funder

The John Templeton Foundation

Serrapilheira Institute

Simons Foundation

Brazilian National Council for Scien- tific and Technological Development (CNPq) via the National Institute for Science and Technol- ogy on Quantum Information

Foundational Questions Insti- tute and Fetzer Franklin Fund

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3