The ZX calculus is a language for surface code lattice surgery

Author:

de Beaudrap Niel1ORCID,Horsman Dominic2ORCID

Affiliation:

1. Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD

2. Department of Physics, Durham University, South Road, Durham, DH1 1LE Department of Computer Science, University of Oxford, Parks Road, Oxford, OX1 3QD

Abstract

A leading choice of error correction for scalable quantum computing is the surface code with lattice surgery. The basic lattice surgery operations, the merging and splitting of logical qubits, act non-unitarily on the logical states and are not easily captured by standard circuit notation. This raises the question of how best to design, verify, and optimise protocols that use lattice surgery, in particular in architectures with complex resource management issues. In this paper we demonstrate that the operations of the ZX calculus --- a form of quantum diagrammatic reasoning based on bialgebras --- match exactly the operations of lattice surgery. Red and green ``spider'' nodes match rough and smooth merges and splits, and follow the axioms of a dagger special associative Frobenius algebra. Some lattice surgery operations require non-trivial correction operations, which are captured natively in the use of the ZX calculus in the form of ensembles of diagrams. We give a first taste of the power of the calculus as a language for lattice surgery by considering two operations (T gates and producing a CNOT) and show how ZX diagram re-write rules give lattice surgery procedures for these operations that are novel, efficient, and highly configurable.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Practical circuit optimization algorithm for quantum simulation based on template matching;Quantum Information Processing;2024-02-01

2. Non-stabilizerness and entanglement from cat-state injection;New Journal of Physics;2024-01-01

3. Structure Design and Logical CNOT Implementation of Multi-logical-qubits Surface Code;Acta Physica Sinica;2024

4. Encoding High-level Quantum Programs as SZX-diagrams;Electronic Proceedings in Theoretical Computer Science;2023-11-16

5. Quantum Linear Optics via String Diagrams;Electronic Proceedings in Theoretical Computer Science;2023-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3