Quantum Speedup Based on Classical Decision Trees

Author:

Beigi Salman1,Taghavi Leila2

Affiliation:

1. School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

2. School of Computer Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

Abstract

Lin and Lin \cite{LL16} have recently shown how starting with a classical query algorithm (decision tree) for a function, we may find upper bounds on its quantum query complexity. More precisely, they have shown that given a decision tree for a function f:{0,1}n[m] whose input can be accessed via queries to its bits, and a guessing algorithm that predicts answers to the queries, there is a quantum query algorithm for f which makes at most O(GT) quantum queries where T is the depth of the decision tree and G is the maximum number of mistakes of the guessing algorithm. In this paper we give a simple proof of and generalize this result for functions f:[]n[m] with non-binary input as well as output alphabets. Our main tool for this generalization is non-binary span program which has recently been developed for non-binary functions, and the dual adversary bound. As applications of our main result we present several quantum query upper bounds, some of which are new. In particular, we show that topological sorting of vertices of a directed graph G can be done with O(n3/2) quantum queries in the adjacency matrix model. Also, we show that the quantum query complexity of the maximum bipartite matching is upper bounded by O(n3/4m+n) in the adjacency list model.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3