Classical and Quantum Algorithms for Tensor Principal Component Analysis

Author:

Hastings Matthew B.12

Affiliation:

1. Station Q, Microsoft Research, Santa Barbara, CA 93106-6105, USA

2. Microsoft Quantum and Microsoft Research, Redmond, WA 98052, USA

Abstract

We present classical and quantum algorithms based on spectral methods for a problem in tensor principal component analysis. The quantum algorithm achieves a quartic speedup while using exponentially smaller space than the fastest classical spectral algorithm, and a super-polynomial speedup over classical algorithms that use only polynomial space. The classical algorithms that we present are related to, but slightly different from those presented recently in Ref. \cite{wein2019kikuchi}. In particular, we have an improved threshold for recovery and the algorithms we present work for both even and odd order tensors. These results suggest that large-scale inference problems are a promising future application for quantum computers.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference23 articles.

1. Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore. The kikuchi hierarchy and tensor pca. 2019. arXiv:1904.03858.

2. Andrea Montanari and Emile Richard. A statistical model for tensor pca. In Advances in Neural Information Processing Systems, pages 2897–2905, 2014.

3. Thibault Lesieur, Leo Miolane, Marc Lelarge, Florent Krzakala, and Lenka Zdeborova. Statistical and computational phase transitions in spiked tensor estimation. In 2017 IEEE International Symposium on Information Theory (ISIT). IEEE, jun 2017. doi:10.1109/isit.2017.8006580.

4. Samuel B Hopkins, Jonathan Shi, and David Steurer. Tensor principal component analysis via sum-of-square proofs. In Conference on Learning Theory, pages 956–1006, 2015.

5. Samuel B. Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast spectral algorithms from sum-of-squares proofs: tensor decomposition and planted sparse vectors. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing - STOC 2016. ACM Press, 2016. doi:10.1145/2897518.2897529.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3