Time Observables in a Timeless Universe

Author:

Favalli Tommaso12ORCID,Smerzi Augusto112ORCID

Affiliation:

1. QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy

2. Universitá degli Studi di Napoli Federico II, Via Cinthia 21, I-80126 Napoli, Italy

Abstract

Time in quantum mechanics is peculiar: it is an observable that cannot be associated to an Hermitian operator. As a consequence it is impossible to explain dynamics in an isolated system without invoking an external classical clock, a fact that becomes particularly problematic in the context of quantum gravity. An unconventional solution was pioneered by Page and Wootters (PaW) in 1983. PaW showed that dynamics can be an emergent property of the entanglement between two subsystems of a static Universe. In this work we first investigate the possibility to introduce in this framework a Hermitian time operator complement of a clock Hamiltonian having an equally-spaced energy spectrum. An Hermitian operator complement of such Hamiltonian was introduced by Pegg in 1998, who named it "Age". We show here that Age, when introduced in the PaW context, can be interpreted as a proper Hermitian time operator conjugate to a "good" clock Hamiltonian. We therefore show that, still following Pegg's formalism, it is possible to introduce in the PaW framework bounded clock Hamiltonians with an unequally-spaced energy spectrum with rational energy ratios. In this case time is described by a POVM and we demonstrate that Pegg's POVM states provide a consistent dynamical evolution of the system even if they are not orthogonal, and therefore partially un-distinguishables.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spacetime quantum and classical mechanics with dynamical foliation;Physical Review D;2024-05-06

2. Conclusions;Springer Theses;2024

3. Quantum Clocks in a Gravitational Field;Springer Theses;2024

4. Quantum Spacetime;Springer Theses;2024

5. Thermal Equilibrium and Emergence of Time;Springer Theses;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3