Affiliation:
1. Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, NM 87185 and Livermore, CA 94550
Abstract
Crosstalk occurs in most quantum computing systems with more than one qubit. It can cause a variety of correlated and nonlocal crosstalk errors that can be especially harmful to fault-tolerant quantum error correction, which generally relies on errors being local and relatively predictable. Mitigating crosstalk errors requires understanding, modeling, and detecting them. In this paper, we introduce a comprehensive framework for crosstalk errors and a protocol for detecting and localizing them. We give a rigorous definition of crosstalk errors that captures a wide range of disparate physical phenomena that have been called ``crosstalk'', and a concrete model for crosstalk-free quantum processors. Errors that violate this model are crosstalk errors. Next, we give an equivalent but purely operational (model-independent) definition of crosstalk errors. Using this definition, we construct a protocol for detecting a large class of crosstalk errors in a multi-qubit processor by finding conditional dependencies between observed experimental probabilities. It is highly efficient, in the sense that the number of unique experiments required scales at most cubically, and very often quadratically, with the number of qubits. We demonstrate the protocol using simulations of 2-qubit and 6-qubit processors.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Reference61 articles.
1. PyGSTi. A python implementation of Gate Set Tomography. URL: http://www.pygsti.info/.
2. IBM Qiskit/ibmq-device-information/tenerife, 2019. URL: https://github.com/Qiskit/ibmq-device-information/tree/master/backends/tenerife/V1.
3. Carole Addis, Francesco Ciccarello, Michele Cascio, G Massimo Palma, and Sabrina Maniscalco. Dynamical decoupling efficiency versus quantum non-markovianity. New Journal of Physics, 17(12):123004, 2015. doi:10.1088/1367-2630/17/12/123004.
4. D Bacciu, T A Etchells, P J G Lisboa, and J Whittaker. Efficient identification of independence networks using mutual information. Computational Statistics, 28:621, 2013. doi:10.1007/s00180-012-0320-6.
5. Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum lower bounds by polynomials. Journal of the ACM, 48(4):778–797, July 2001. doi:10.1145/502090.502097.
Cited by
120 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献