Mitigation of readout noise in near-term quantum devices by classical post-processing based on detector tomography
Author:
Maciejewski Filip B.123ORCID, Zimborás Zoltán456, Oszmaniec Michał23
Affiliation:
1. University of Warsaw, Faculty of Physics, Ludwika Pasteura 5, 02-093 Warszawa, Poland 2. International Centre for Theory of Quantum Technologies, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland 3. Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa, Poland 4. Wigner Research Centre for Physics of the Hungarian Academy of Sciences, H-1525 Budapest, P.O.Box 49, Hungary 5. BME-MTA Lendület Quantum Information Theory Research Group, Budapest, Hungary 6. Mathematical Institute, Budapest University of Technology and Economics, P.O.Box 91, H-1111, Budapest, Hungary
Abstract
We propose a simple scheme to reduce readout errors in experiments on quantum systems with finite number of measurement outcomes. Our method relies on performing classical post-processing which is preceded by Quantum Detector Tomography, i.e., the reconstruction of a Positive-Operator Valued Measure (POVM) describing the given quantum measurement device. If the measurement device is affected only by an invertible classical noise, it is possible to correct the outcome statistics of future experiments performed on the same device. To support the practical applicability of this scheme for near-term quantum devices, we characterize measurements implemented in IBM's and Rigetti's quantum processors. We find that for these devices, based on superconducting transmon qubits, classical noise is indeed the dominant source of readout errors. Moreover, we analyze the influence of the presence of coherent errors and finite statistics on the performance of our error-mitigation procedure. Applying our scheme on the IBM's 5-qubit device, we observe a significant improvement of the results of a number of single- and two-qubit tasks including Quantum State Tomography (QST), Quantum Process Tomography (QPT), the implementation of non-projective measurements, and certain quantum algorithms (Grover's search and the Bernstein-Vazirani algorithm). Finally, we present results showing improvement for the implementation of certain probability distributions in the case of five qubits.
Publisher
Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften
Subject
Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics
Reference62 articles.
1. J. Preskill ``Quantum Computing in the NISQ era and beyond'' Quantum 2, 79 (2018). 2. H. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander, G. Alexandrowics, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya, P. Barkoutsos, G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S. Bishop, S. Bosch, S. Bravyi, D. Bucher, F. Cabrera, P. Calpin, L. Capelluto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen, R. Chen, J. M. Chow, C. Claus, C. Clauss, A. J. Cross, A. W. Cross, S. Cross, J. Cruz-Benito, C. Culver, A. D. Córcoles-Gonzales, S. Dague, T. E. Dandachi, M. Dartiailh, DavideFrr, A. R. Davila, D. Ding, J. Doi, E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran, K. EL-Safty, E. Eastman, P. Eendebak, D. Egger, M. Everitt, P. M. Fernández, A. H. Ferrera, A. Frisch, A. Fuhrer, M. GEORGE, J. Gacon, Gadi, B. G. Gago, J. M. Gambetta, A. Gammanpila, L. Garcia, S. Garion, J. Gomez-Mosquera, S. Puente González, I. Gould, D. Greenberg, D. Grinko, W. Guan, J. A. Gunnels, I. Haide, I. Hamamura, V. Havlicek, J. Hellmers, Ł. Herok, S. Hillmich, H. Horii, C. Howington, S. Hu, W. Hu, H. Imai, T. Imamichi, K. Ishizaki, R. Iten, T. Itoko, A. Javadi-Abhari, Jessica, K. Johns, T. Kachmann, N. Kanazawa, Kang-Bae, A. Karazeev, P. Kassebaum, S. King, Knabberjoe, A. Kovyrshin, V. Krishnan, K. Krsulich, G. Kus, R. LaRose, R. Lambert, J. Latone, S. Lawrence, D. Liu, P. Liu, Y. Maeng, A. Malyshev, J. Marecek, M. Marques, D. Mathews, A. Matsuo, D. T. McClure, C. McGarry, D. McKay, D. McPherson, S. Meesala, M. Mevissen, A. Mezzacapo, R. Midha, Z. Minev, A. Mitchell, N. Moll, M. D. Mooring, R. Morales, N. Moran, P. Murali, J. Müggenburg, D. Nadlinger, G. Nannicini, P. Nation, Y. Naveh, P. Neuweiler, P. Niroula, H. Norlen, L. J. O'Riordan, O. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello, A. Phan, M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli, J. Pérez, Quintiii, R. Raymond, R. M.-C. Redondo, M. Reuter, J. Rice, D. M. Rodríguez, M. Rossmannek, M. Ryu, T. SAPV, SamFerracin, M. Sandberg, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L. Scholten, E. Schoute, J. Schwarm, I. F. Sertage, K. Setia, N. Shammah, Y. Shi, A. Silva, A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov, S. Sivarajah, M. B. Sletfjerding, J. A. Smolin, M. Soeken, I. O. Sokolov, SooluThomas, D. Steenken, M. Stypulkoski, J. Suen, H. Takahashi, I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod, E. Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner, Y. Vaknin, C. R. Valcarce, F. Varchon, A. C. Vazquez, D. Vogt-Lee, C. Vuillot, J. Weaver, R. Wieczorek, J. A. Wildstrom, R. Wille, E. Winston, J. J. Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood, J. Wootton, D. Yeralin, R. Young, J. Yu, C. Zachow, L. Zdanski, C. Zoufal, Zoufalc, azulehner, bcamorrison, brandhsn, zz, dan1pal, dime10, drholmie, elfrocampeador, faisaldebouni, fanizzamarco, gruu, kanejess, klinvill, kurarrr, lerongil, ma5x, aharoni, ordmoj, sethmerkel, strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang, yang.luh, yelojakit, and yotamvakninibm, ``Qiskit: An Open-source Framework for Quantum Computing'' (2019). 3. IBM ``https://quantumexperience.ng.bluemix.net/qx/'' (Access: 2018.12.28). 4. Rigetti ``https://www.rigetti.com/forest'' (Access: 2018.12.28). 5. D-Wave ``https://cloud.dwavesys.com/qubist/''.
Cited by
147 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|