On the Entanglement Cost of One-Shot Compression

Author:

Bab Hadiashar Shima1ORCID,Nayak Ashwin1ORCID

Affiliation:

1. Department of Combinatorics and Optimization, and Institute for Quantum Computing, University of Waterloo, 200 University Ave. W., Waterloo, ON, N2L 3G1, Canada.

Abstract

We revisit the task of visible compression of an ensemble of quantum states with entanglement assistance in the one-shot setting. The protocols achieving the best compression use many more qubits of shared entanglement than the number of qubits in the states in the ensemble. Other compression protocols, with potentially larger communication cost, have entanglement cost bounded by the number of qubits in the given states. This motivates the question as to whether entanglement is truly necessary for compression, and if so, how much of it is needed. Motivated by questions in communication complexity, we lift certain restrictions that are placed on compression protocols in tasks such as state-splitting and channel simulation. We show that an ensemble of the form designed by Jain, Radhakrishnan, and Sen (ICALP'03) saturates the known bounds on the sum of communication and entanglement costs, even with the relaxed compression protocols we study. The ensemble and the associated one-way communication protocol have several remarkable properties. The ensemble is incompressible by more than a constant number of qubits without shared entanglement, even when constant error is allowed. Moreover, in the presence of shared entanglement, the communication cost of compression can be arbitrarily smaller than the entanglement cost. The quantum information cost of the protocol can thus be arbitrarily smaller than the cost of compression without shared entanglement. The ensemble can also be used to show the impossibility of reducing, via compression, the shared entanglement used in two-party protocols for computing Boolean functions.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3