Variational Quantum Fidelity Estimation

Author:

Cerezo Marco12ORCID,Poremba Alexander3ORCID,Cincio Lukasz1ORCID,Coles Patrick J.1ORCID

Affiliation:

1. Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, USA

2. Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM, USA

3. Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA.

Abstract

Computing quantum state fidelity will be important to verify and characterize states prepared on a quantum computer. In this work, we propose novel lower and upper bounds for the fidelity F(ρ,σ) based on the ``truncated fidelity'' F(ρm,σ), which is evaluated for a state ρm obtained by projecting ρ onto its m-largest eigenvalues. Our bounds can be refined, i.e., they tighten monotonically with m. To compute our bounds, we introduce a hybrid quantum-classical algorithm, called Variational Quantum Fidelity Estimation, that involves three steps: (1) variationally diagonalize ρ, (2) compute matrix elements of σ in the eigenbasis of ρ, and (3) combine these matrix elements to compute our bounds. Our algorithm is aimed at the case where σ is arbitrary and ρ is low rank, which we call low-rank fidelity estimation, and we prove that no classical algorithm can efficiently solve this problem under reasonable assumptions. Finally, we demonstrate that our bounds can detect quantum phase transitions and are often tighter than previously known computable bounds for realistic situations.

Publisher

Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften

Subject

Physics and Astronomy (miscellaneous),Atomic and Molecular Physics, and Optics

Reference57 articles.

1. A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213, 2014. https://doi.org/10.1038/ncomms5213.

2. Katherine L Brown, William J Munro, and Vivien M Kendon. Using quantum computers for quantum simulation. Entropy, 12 (11): 2268–2307, 2010. https://doi.org/10.3390/e12112268.

3. Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Physical review letters, 103 (15): 150502, 2009. https://doi.org/10.1103/PhysRevLett.103.150502.

4. Armin Uhlmann. The "transition probability" in the state space of a$\star$-algebra. Reports on Mathematical Physics, 9 (2): 273–279, 1976. https://doi.org/10.1016/0034-4877(76)90060-4.

5. Richard Jozsa. Fidelity for mixed quantum states. Journal of modern optics, 41 (12): 2315–2323, 1994. https://doi.org/10.1080/09500349414552171.

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3