Estudio comparativo de métodos basados en reconocimiento de patrones para identificar movimientos de mano y muñeca por medio de señales SEMG

Author:

Guerrero Méndez Cristian DavidORCID,Moreno Arévalo Brayan SneiderORCID,Ruiz Olaya Andrés FelipeORCID

Abstract

Uno de los canales en la interacción hombre-máquina es el uso de señales de electromiografía de superficie (SEMG), las cuales, a través de técnicas de procesamiento y clasificación de características pueden proporcionar comandos para controlar dispositivos de asistencia, proporcionar accesibilidad y rehabilitación en personas en situación de discapacidad. Por ello, las metodologías de procesamiento de las señales deben enfocarse en el uso de métodos avanzados que permitan una adecuada identificación de la intención de movimiento de los usuarios. En el presente artículo, se realiza un estudio comparativo de algoritmos de reconocimiento de patrones desarrollados en Matlab para movimientos de miembro superior, relacionados con movimientos de mano y muñeca en personas diestras. Para esto, se utilizó la base de datos pública NinaPro, que proporciona registros de SEMG, mientras un usuario ejecuta diversos movimientos. En total se evaluaron 10 sujetos, 5 hombres y 5 mujeres. El algoritmo desarrollado incluye etapas de preprocesamiento, extracción de características y clasificación de patrones. La etapa de extracción de características incluyó el cálculo de raíz media cuadrática (RMS) de la señal. Se implementaron cuatro métodos de clasificación (KNN, NB, LDA y SVM), los cuales realizan una identificación de ocho movimientos isométricos e isotónicos de mano y muñeca. Como métrica de evaluación se utilizó el porcentaje de clasificación. Además, se realiza un análisis de significancia estadística para determinar diferencias entre clasificadores y grupos poblacionales. Como resultados, se determina que el mejor clasificador implementado es el SVM con un porcentaje de clasificación superior al 90 %, encontrando diferencias significativas entre los resultados de los métodos. No obstante, se observa que los hombres presentan mejores resultados que las mujeres, de acuerdo con la métrica de evaluación.

Publisher

Universidad EAN

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3