USE OF DEEP MACHINE LEARNING METHODS OF ARTIFICIAL NEURAL NETWORKS FOR DESIGNING ALGORITHMS OF ELECTROMYOGRAPHY SIGNAL RECOGNITION IN BIONIC PROSTHESIS

Author:

Yarygin A. A.1,Aytbaev B. H.2,Kanyshev A. Yu.3,Alekseeva E. A.4

Affiliation:

1. Lomonosov Moscow State University

2. Bio  Digital  Technology  LLC

3. MNIIRS JSC

4. M. A. Kartsev Computing System Research and Development Institute (NIIVK, JSC)

Abstract

For sterling application of scientific and engineered achievements in field of bionic prosthesis it’s required to provide comfortable  and natural human‑prosthesis interface for an end‑user. In this article we are looking into ways and methods of analysis of the  signal collected through electromyography activity of muscles on the skin surface. Such signal is nonstationary and unstable  by  its  nature,  dependent  on  various  factors.  sEMG  based  interface  has  several  unsolved  problem  at  the  moment,  such  as  insufficient accuracy of recognition and noticeable delay caused by signal recognition and processing. Article is dedicated to  application of deep machine learning required to provide decent recognition of electromyography signals. In the course of the  research hardware was developed to register muscle activity. Data collecting system and algorithms of gesture recognition have  been designed as well. In conclusion decent results were achieved by using convolutional neural network, with two‑dimensional input, since data stream has obvious translational orientation. In the future, modification of neural network architecture, learning  algorithms and experiments with structure of data are planned.

Publisher

CRI Electronics

Subject

General Medicine

Reference44 articles.

1. Brose S. W., Weber D. J., Salatin B. A., et al. The role of assistive robotics in the lives of persons with disability. American Journal of Physical Medicine Rehabilitation, 2010, vol. 89, no. 6, pp. 509–521.

2. Smith C. Bionic eyes, arms and spines are no longer science fiction. The Science Show, 2017. Available at: http://www.abc.net.au/news/2017-02-16/bionic-eyes-arms-and-spines-no-longer-science-fiction/8266238 (accessed 22.01.2018).

3. Merletti R., Farina D. Surface EMG processing: introduction to the special issue. Biomedical Signal Processing and Control, 2008, vol. 3, iss. 2, pp. 115–117.

4. Nikolaev S. G. Praktikum po klinicheskoi elektromiografii [Clinical electromyography workshop]. 2nd ed. Ivanovo, Ivanovskaya gosudarstvennaya meditsinskaya akademiya Publ., 2003, 264 p. (In Russian).

5. Shin Y. K., Proctor R. W., Capaldi E. J. A review of contemporary ideomotor theory. Psychological Bulletin, 2010, vol. 136 (6), pp. 943–974.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3