MARINE FIRE-DANGEROUS SITUATIONS FACTORS’ VALUES FORECASTING BASED ON ARTIFICIAL NEURAL NETWORK

Author:

Romanov A. E.1

Affiliation:

1. «NPP «Radar mms» JSC

Abstract

The article describes the procedure of marine fire-dangerous situations factors’ values forecasting based on artificial neural network. These factors are temperature, optical air density, aerosol concentration. Given procedure is flexible and can be expanded for other factors of fire-safety state of monitored object. Artificial neural network with architecture of three-layer perceptron is used for forecasting. The article gives a common scheme for realization of fire-dangerous situations factors’ values forecasting, substantiates the choice of used artificial neural network’s architecture, gives perceptron learning algorithm. As a result of given procedure execution factors’ values forecasting is implemented for prevention of fire-dangerous situation and the adoption of early actions. In case of integration of the developed procedure inside ship information management systems’ algorithmic support is capable of dramatically raise effectiveness of decisions made while providing fire safety on ships.

Publisher

CRI Electronics

Subject

General Medicine

Reference6 articles.

1. Haykin S. Neural networks: a comprehensive foundation. Prentice Hall, 1998. 842 p.

2. Romanov A. Ye. Mathematical modeling of the development of a fire hazardous situation on a ship based on cellular automata. (Conference proceedings) Sostoyaniye, problemy i perspektivy sozdaniya korabelnykh informatsionno-upravlyayushchikh kompleksov. Moscow, Morinformsistema-Agat Publ., 2020. (In Russian).

3. Romanov A. E. Mathematical model of marine fire-dangerous situation hazard rate based on fuzzy output system. Issues of radio electronics, 2020, no. 6, pp. 54–60. (In Russian).

4. Tupikov D. V., Ivashchenko V. A. Neural network forecasting of the values of the factors of fire occurrence at production facilities. (Conference proceedings) Matematicheskiye metody v tekhnike i tekhnologiyakh – MMTT-27. Tambov, TGTU Publ., 2014. Vol. 3, pp. 59–61. (In Russian).

5. Wassermann P. D. Combined backpropagation/Cauchi machine. Neural Networks. Abstracts of the First INNS Meeting, Boston, 1988, vol. 1, p. 556.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3