Characterization of optical emissions during laser metal deposition for the implementation of an in-process powder stream monitoring

Author:

Hildinger Philipp1ORCID,Seefeld Thomas12ORCID,Bohlen Annika1ORCID

Affiliation:

1. BIAS—Bremer Institut für angewandte Strahltechnik GmbH 1 , Klagenfurter Str. 5, Bremen 28359, Germany

2. MAPEX Center for Materials and Processes—Universität Bremen 2 , Bibliothekstraße 1, Bremen 28359, Germany

Abstract

In laser metal deposition (LMD), the powder is fed into the laser-induced melt pool using different powder nozzles for the purpose of additive manufacturing and the generation of wear and corrosion protection coatings. So far, there are no industrially established in-process monitoring systems for the powder stream but mainly measuring systems that examine the powder stream propagation offline and without the processing laser. A challenge in implementing an image-based in-process monitoring system is the process illumination for the distinction of the powder particles from the background radiation caused by the processing laser and the melt pool. To overcome this challenge, filtering is needed to attenuate the process emissions and simultaneously brighten the powder stream. Therefore, this work focuses on generating a continuous high contrast between the powder and the background. The powder particles are illuminated by a light source mounted laterally to the powder stream in the horizontal plane below the nozzle opening to make the reflecting powder particles visible to the camera. The optical process emissions were characterized during LMD with respect to the influence of an increasing laser power, which was presented in correlation to the increasing process emissions. The evaluation of the spectrograms has made it possible, due to the adapted illumination and filtering, to ensure a constantly high contrast between the process emissions and the powder so that online monitoring of the powder stream was implemented successfully during the LMD process despite the active processing laser.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3