Multi-objective optimization of key process parameters in laser cladding Stellite12 cobalt-based alloy powder

Author:

Zou Yang12ORCID,Shi Shaoqi2,Yang Zefeng2ORCID,Xu Teng2,Liang Yongqi12,Yu Qiang2,Cheng Yuchuan2ORCID,Xu Gaojie2,Li Zhixiang2ORCID,Long Fei23ORCID

Affiliation:

1. School of Materials Science and Chemical Engineering, Ningbo University 1 , Ningbo 315211, China

2. Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences 2 , Ningbo 315201, China

3. Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China 3 , Ningbo 315100, China

Abstract

Laser cladding (LC) process parameters have a substantial influence on coating morphology and mechanical characteristics; it is necessary to optimize key parameters for laser processing. In this study, Stellite12 cobalt-based alloy powder with excellent corrosion and wear resistance was selected as the cladding material. The multi-objective optimization model of the LC process was established by response surface methodology, laser power, scanning speed, and powder feeding rate as input factors, and the target response variables involve dilution, aspect ratio, and microhardness of the single-track cladding. Combined with variance analysis (ANOVA), the multi-objective optimization of laser power, scanning speed, and powder feeding rate was conducted. A single-track cladding layer with a dilution of 18.29%, an aspect ratio of 3.88, and a microhardness of 634.67 HV0.2 was obtained using the optimized process parameters. Errors between the predicted and actual values of single-track cladding dilution, aspect ratio, and microhardness were less than 8%, which verified the accuracy of the established model.

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3