Femtosecond laser etching of Li1.5Al0.5Ge1.5(PO4)3 glass using the Bessel beam

Author:

Liu Weihang1,Jiang Kaiyong1,Kotobuki Masashi2ORCID,Yan Binggong1ORCID

Affiliation:

1. Fujian Key Laboratory of Special Energy Manufacturing, Xiamen Key Laboratory of Digital Vision Measurement, Huaqiao University 1 , Xiamen 361021, China

2. Battery Research Center of Green Energy, Ming Chi University of Technology 2 , Taibei 24301, Taiwan

Abstract

Surface textured materials can exhibit enhanced properties due to their unique morphology, large surface area, and modified surface properties. The laser etching process has garnered significant attention for its capability to create textures on sample surfaces, resulting in a substantial improvement of surface properties. In this study, we investigate the application of femtosecond laser etching on solid electrolytes. To achieve this, an axicon lens is employed to transform the conventional Gaussian beam into a Bessel beam, with an extended focal depth that facilitates the laser etching process. A telescope laser system with a Bessel beam having a focal length of 2 mm is constructed based on finite element analysis. Glassy LAGP [Li1.5Al0.5Ge1.5(PO4)3] with a thickness of 2 mm is successfully etched simultaneously on both surfaces using this approach. Utilization of femtosecond laser pulses effectively prevents sample melting during the process. As predicted by finite element analysis, wider ditches are observed on the surface compared to those on the backside due to higher laser intensity at the surface region. By modifying the parameters of the telescope laser system, size and depth control can be achieved for these ditches.

Publisher

Laser Institute of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3