Parametric investigation and optimization in laser based directed energy deposition of tungsten carbide-cobalt

Author:

Shrivastava Ankit1ORCID,Changdar Anirban12ORCID,Datta Abhijit12ORCID,Dutta Samik12ORCID,Chakraborty Shitanshu Shekhar12ORCID

Affiliation:

1. Additive Manufacturing Research Group, CSIR—Central Mechanical Engineering Research Institute 1 , Durgapur 713209, India

2. Academy of Scientific and Innovative Research (AcSIR) 2 , Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India

Abstract

Cemented carbide (WC-Co), the widely used tool-die material, is difficult to be machined by conventional and nonconventional techniques. This inspired exploring additive manufacturing (AM) of this material. However, porosity, brittleness due to cobalt depletion, etc. have been reported in the literature with rare success. For the AM of WC-Co, the current work focuses on directed energy deposition, which can be implemented with existing laser cutting-welding workstations, with modifications. To ensure the retention of cobalt even after inevitable vaporization of some of its initial content during deposition, 20 wt. % of Co was mixed with WC powder by low-energy ball milling. Laser power, scan speed, and powder flow rate were varied following a full-factorial design of experiments. The analysis of variance revealed that the experimental model and most of the parameters were significant. Only the laser power came out to be insignificant for the contact angle. The track height and width increased with the laser power and reduced with the scan speed. The contact angle increased with the scan speed and reduced with the powder flow rate. Cross sections of the deposited track showed no pores or cracks. Multiobjective optimization with gray relational analysis was conducted to get the parameter combination giving high values of the contact angle, track height, and width simultaneously. The optimum parameter combination, thus, obtained is 700 W laser power, 5 mm/s scan speed, and 5 g/min powder flow rate. This yielded 305 ± 40 μm track height, 2132 ± 33 μm width, and 152° ± 2° contact angle.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3