Monitoring the degree of dilution during directed energy deposition of aluminum bronze and H13 tool steel using optical emission spectroscopy

Author:

Schmidt Malte1ORCID,Partes Knut1,Rajput Rohan2ORCID,Phochkhua Giorgi2,Köhler Henry2

Affiliation:

1. Jade University of Applied Sciences 1 , Friedrich-Paffrath-Straße 101, Wilhelmshaven 26389, Germany

2. DED Services GmbH 2 , Porschestraße 3-5, Helmstedt 38350, Germany

Abstract

Controlling heat transfer in casting tools is a key quality aspect. It can be improved by selectively applying volumetric aluminum bronze (CuAl9.5Fe1.2) sections in the core of the tools and subsequently depositing these cores with hard-facing H13 tool steel. Directed energy deposition (DED) can be used for both additive manufacturing of aluminum bronze and hard-facing by depositing the filler material onto a substrate surface or previously manufactured bodies. A sufficient metallurgical bonding of the deposited filler material and the underlying layer must be ensured. Hence, the dilution is a key factor for quality assurance. However, high dilution of the underlying layer and the filler material negatively affects the desired properties and must be monitored. Optical emission spectroscopy of the DED process emissions is investigated by comparing the emission lines of the individual elements comprising the base and the filler materials. Multiple single tracks using aluminum bronze as the filler material are laser-cladded with varying power, onto the two different types of substrates, i.e., mild steel S355 (1.0570) and hot working tool steel H11 (1.2343). Additionally, single tracks of H13 (1.2344) are deposited with varying laser powers onto an additively manufactured core of aluminum bronze. Both resulting in deposition tracks with varying dilution values. Multiple emission lines of Cr, Fe, Cu, Al, and Mn are detected and measured (line intensity). Line intensity ratios using the element emission lines are calculated and correlated with the respective metallographic results of the deposition tracks (dilution and chemical composition). Deposition tracks with a higher dilution (CuAl9.5Fe1.2 onto S355/H11 as well as H13 onto CuAl9.5Fe1.2) showed an increased line intensity ratio of the underlying material to the filler material. Moreover, this technology was transferred in a multilayer industrial application.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3