Combination of Eulerian and ray-tracing approaches for copper laser welding simulation

Author:

Daligault Julien1,Dal Morgan1,Gorny Cyril1,Coste Frédéric1,Fabbro Rémy1

Affiliation:

1. PIMM Laboratory, Arts et Métiers Institute of Technology (Paris), CNRS, CNAM, HESAM University, 151 Boulevard de l’Hôpital, 75013 Paris, France

Abstract

Laser welding of pure copper and its alloys is a challenging process with a growing industrial interest due to the latest development in the field of electric mobility. The difficulties are mainly related to the material's high thermal conductivity and a poor absorptivity of few percent at the classical IR laser (YAG). It is also well known that such a configuration can lead to the formation of undesirable defects, such as pores or spatters as a consequence of melt pool instabilities. It has been observed experimentally that the usage of a laser at both high speed and high power tends to limit those instabilities. Although this positive influence has already been observed for equivalent materials, a physical explanation is not yet available. In this perspective, a multiphysical simulation of the process at the melt pool scale is currently being developed by using comsol Multiphysics® software. The latter includes an Eulerian interface tracking method for the liquid-gas interface (phase field) and a ray-tracing description of the laser beam to take into account the well-known beam trapping effect under a keyhole regime. For the sake of time computation, the numerical model is first developed in an axisymmetric coordinate system (r,z) to be representative of a laser spot welding process and to validate the numerical coupling methodology. The model will then be extended to a 3D welding case and used as a predictive tool to make appropriate choices on welding parameters to obtain good quality welds (stable melt pool, low porosity rate, etc.).

Funder

Agence Nationale de la Recherche

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3