Simulation and prediction of the temperature field of copper alloys fabricated by selective laser melting

Author:

Chen Dongju12,Wang Peng12,Sun Kun12ORCID,Tang Yuhang3,Kong Shuai12,Fan Jinwei12ORCID

Affiliation:

1. Mechanical Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

3. Beijing Institute of Control Engineering, Beijing 100190, China

Abstract

In the selective laser melting (SLM) process, the experimental approach to determine the optimal process parameters is labor-intensive, material-intensive, and time-consuming. The use of simulation methods also requires more time support and higher hardware requirements. In this paper, a three-dimensional transient heat transfer model and a neural network optimization process parameter model in the process of preparing copper alloys by SLM are developed by combining finite element simulation methods with neural network prediction. The thermal behavior of the multitrack molten pools was investigated by ANSYS APDL, and the effects of different laser powers and scanning speeds on the temperature field and structure dimensions of the molten pools were discussed. The results show that the current single-track has a significant preheating effect on the unmachined single-track and a reheating effect on the machined single-track during the multitrack forming process. The laser power and scanning speed can be controlled to regulate the temperature, 3D size, and heat spread area of the molten pool to avoid over-melting and under-melting. The accuracy of the temperature field model was verified by single-track experiments. A neural network prediction model was constructed to predict the maximum temperature and size of the molten pool by optimizing the backpropagation neural network with a genetic algorithm, providing a methodological guide for the study of SLM process parameters.

Funder

National Natural Science Foundation of China

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3