Modeling and multiobjective optimization of thermal effects of fiber laser cutting of Inconel 600 sheet by employing the ANN and multi-objective PSO algorithm

Author:

Dehkordi Mohammad Hossein Razavi12,Jasim Dheyaa J.3,Al-Rubaye Ameer H.4,Akbari Mohammad12,Bagherzadeh Seyed Amin12,Ghazi Mohammadreza1,Mohammadkarimi Hamed5

Affiliation:

1. Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University 1 , Najafabad, Iran

2. Aerospace and Energy Conversion Research Center, Najafabad Branch, Islamic Azad University 2 , Najafabad, Iran

3. Department of Petroleum Engineering, Al-Amarah University College 3 , Maysan, Iraq

4. Department of Petroleum Engineering, Al-Kitab University 4 , Altun Kupri, Iraq

5. Department of Aerospace Engineering, Amirkabir University of Technology 5 , Tehran, Iran

Abstract

In this study, the experimental results of fiber laser cutting of Inconel 600 was modeled and optimized by combining artificial neural networks (ANNs) and particle swarm optimization (PSO). The impact of cutting criteria on the temperature adjacent to the cut kerf and roughness of the cutting edge was experimentally evaluated. The independent variables are the cutting speed, focal length, and laser power. The fiber laser cutting characteristics are modeled at different cutting conditions by the ANN method according to the experimental data. The findings indicated that the ANN is performing reasonably well in dealing with the training and test datasets. Also, the multiobjective PSO has been developed to effectively optimize the laser cutting procedure parameters in order to achieve the maximum temperature (the temperature upper than 370 °C) and minimum roughness (lower than 3 μm) simultaneously in order to improve the laser cutting efficiency. Based on the PSO results, the optimal laser power gained at a laser power of 830 and 1080 W at cutting speed ranges from 2 to 4 m/min and maximum focal length ranges between 0.75 and 0.8 mm where the lowest amount of roughness was created. The optimum temperature ranges were between 370 and 419°C. At a laser power of 1000 W and speed of 4 m/min, the smooth cutting edge at minimum roughness was gained without any defects. Transmission of the focal point up to 1.5 mm below the top surface of the sheet improved the roughness of the cutting edge and the cut quality by producing the smooth surface without slags.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3