Mathematical model to study the keyhole formation in pulsed Nd:YAG laser welding of SS 316L material and its experimental verification

Author:

Bhardwaj Vijay1,Upadhyaya B. N.1,Bindra K. S.1

Affiliation:

1. Laser Technology Division, Raja Ramanna Centre for Advanced Technology, Indore 452013, India

Abstract

A mathematical model to study keyhole formation and its propagation in the material is developed for laser welding performed in an open atmosphere. The present model overcomes the limitations of existing models in assuming sonic vapor jet velocity to calculate vaporization-induced recoil pressure responsible for keyhole formation. In the present model, the exact value of vapor jet velocity is calculated using gas dynamics equations. The minimum threshold value of absorbed laser beam intensity required to perform keyhole welding irrespective of laser pulse duration for laser beam radius of 0.6 mm has been found to be 0.8 × 105 W/cm2 and is in good agreement with the experimental value. In between conduction mode welding and keyhole mode welding, a transition mode exists where a keyhole mechanism develops itself and melt displacement is not considerable in this zone. Weld penetration occurs mainly through heat diffusion in this transition mode. The predicted values for keyhole penetration velocity are also in good agreement with the experimental values. At a longer pulse duration, the model over-predicts the keyhole penetration velocity as compared to the experimental value due to nonconsideration of vapor plasma absorption of the laser beam.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3