Research progress on heteromorphic structure parts fabricated by additive manufacturing based on inside-laser coaxial powder feeding

Author:

Zhao Yuwei1,Li Jiaqiang12,Zhu Gangxian1,Shi Shihong1,Fu Geyan1

Affiliation:

1. School of Mechanical and Electric Engineering, Soochow University, Suzhou 215021, China

2. Advanced Manufacturing Technology Research Center, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong

Abstract

Inside-laser material feeding laser cladding deposition (IMF-LCD) is a directed energy deposition technology featuring “hollow beam, annular spot, centered powder, and coaxial powder feeding.” IMF-LCD offers distinct advantages over traditional outside laser material feeding laser cladding deposition (OMF-LCD), such as a good laser-powder coupling effect, high powder utilization, high forming flexibility, uniform thermal field distribution in molten pools, and excellent forming surface quality. IMF-LCD would significantly improve forming efficiency and surface quality while it was applied to rapid direct manufacturing and repair of complex metallic parts compared to OMF-LCD. In this manuscript, the working principle of IMF-LCD technology is briefly introduced. Mostly, the research progress on heteromorphic structure parts fabricated by IMF-LCD was summarized, focusing on layered design, posture change, forming strategy optimization, and process parameter adjustment. The heteromorphic structure included a twisted thin-walled structure, variant height/width structure, overhanging structure, and closed structure. Based on the excellent characteristics of this technology, the exploration of high forming quality heteromorphic structural parts is carried out by changing the process parameters and forming processes such as the variable attitude stacking method, the conformal discrete layering method and the normal layering method, and the surface roughness is as low as 1.323  μm, the dimensional accuracy is as high as 1.6%. Simultaneously, the powder utilization rate of IMF-LCD reached 60%–80% on average, in accordance with the advantages of the laser-powder coupling effect. Finally, the remarkable research and application of IMF-LCD technology in high flexibility, high precision, high surface quality, and high material utilization would further promote the development of additive manufacturing with higher performance, higher quality, and lower cost in the future.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

China Postdoctoral Science Foundation

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3