Research of melting state identification and process performance based on selective laser melting acoustic signals

Author:

Chen Dongju12ORCID,Wang Anqing12ORCID,Wang Peng12,Li Na12

Affiliation:

1. Mechanical Industry Key Laboratory of Heavy Machine Tool Digital Design and Testing, Faculty of Materials and Manufacturing, Beijing University of Technology 1 , Beijing 100124, China

2. Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology 2 , Beijing 100124, China

Abstract

An acoustic signal acquisition experiment platform was constructed to gather the acoustic signals throughout the formation of 35 single-tracks of a 120 mm length copper-tin alloy in order to monitor and precisely manage the selective laser melting (SLM) forming process and enhance overall quality. The monitoring of the SLM forming process includes the analysis of the time and frequency domains, the extraction of the SLM process features using linear prediction techniques, and the development of support vector machine (SVM) model, back-propagation (BP) neural network models, and convolutional neural network models. The results show that the over-melted state can be identified by extracting time and frequency-domain features over a given range, but the normal and unmelted states are difficult to distinguish. The convolutional neural network model had a recognition rate of 99%, the BP neural network had an effective recognition rate of 90%, and the SVM model had a combined classification rate of 83.14% for the three states after optimization. In contrast, the convolutional neural network model performs best in monitoring and offers a framework and point of reference for acoustic signal analysis and online SLM quality monitoring.

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3