Experimental evaluation of poly methyl methacrylate-acrylonitrile butadiene styrene transmission welding using mold-integrated simultaneous laser welding technology

Author:

Choo Woo-In12ORCID,Lee Yoo-Eun1ORCID,Im Sungbin12ORCID,Oh Minsun1ORCID,Kim Dongchoul2ORCID,Kam Dong Hyuck1ORCID

Affiliation:

1. Advanced Joining & Additive Manufacturing R&D Department, Korea Institute of Industrial Technology 1 , Incheon 21999, Republic of Korea

2. Department of Mechanical Engineering, Sogang University 2 , Seoul 121-742, Republic of Korea

Abstract

Automotive lamps have not only functional roles but also highly esthetic purposes in the design of a car. As such, they use complex three-dimensional shapes to implement various designs. The main manufacturing challenge comes from the plastic bonding process of the complex components, which currently is done by thermal bonding, ultrasonic bonding, and laser welding. Laser welding processes with a narrow joint area are preferred since they require minimal joint area and produce no burr. In this study, an optimization study for simultaneous bonding of lamps is carried out using multiple light sources generated by connecting specially manufactured bundle optical fibers with a diode laser source. The diode laser beams with a wavelength of 915 nm and a power of 80 W, each, were simultaneously delivered through a 30-optical fibers bundle. The fibers were integrated within the mold that holds the lamp achieving transmission welding through the overlapped upper transparent polymer PMMA (IF850) and the lower nontransparent polymer ABS (HL121H). The process parameters investigated were the laser power, duration time, waveguide gap, and clamping pressure. We present optimized process parameters that achieved no pores and relatively uniform melting. In the shear test, the average load was approximately 1300 N, and the base sheet fractures along the welding joints were observed.

Funder

Ministry of Trade, Industry and Energy

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3