Novel path planning algorithm for laser powder bed fusion to improve the scan quality of triply periodic minimal surface structures

Author:

Tang Huiliang12ORCID,Zhang Jiangzhao12,Wang Chu12ORCID,Long Yu12ORCID

Affiliation:

1. Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University 1 , Nanning, Guangxi 530004, China

2. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University 2 , Nanning, Guangxi 530004, China

Abstract

Traditional path planning methods, such as contour and raster methods, suffer from problems like uneven filling, overfilling, and underfilling in the sliced layers, resulting in poor continuity of the lattice melt pool, internal porosity defects, and severe powder adhesion at the contour edges, while research on path planning for three-periodic minimal surfaces lattices is relatively limited. In this study, a scanning path planning method based on lattice equations control is proposed, which differs from traditional contour paths and raster paths. The new paths are controlled by the isosurface parameters of the lattice equation and optimized using the traveling salesman problem, resulting in more uniform scanning paths. The new paths avoid the underfilling issue present in raster path and the sawtooth-shaped borders of raster path. Additionally, they circumvent the nonuniform scanning path problem caused by uneven wall thickness in contour path. Through visualizing the paths and conducting printing experiments on the lattice, it is found that the new path is more uniform compared to contour paths, effectively addressing the issue of overfilling. Compared to raster paths, the new path has smoother boundaries and reduces internal porosity and powder adhesion within the lattice. This research has important value in reducing internal porosity and external powder adhesion issues in three-period minimal surface (TPMS) lattice printing processes, further enhancing the manufacturing quality of TPMS lattices.

Funder

the Key R&D Program of Guangxi Province

National Key R&D Program of China

the Special Fund for Local Scientific and Technological Development guided by the Central Government

Publisher

Laser Institute of America

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3