Influence of laser shock peening on microstructure and property of Ni60 cladding layer and the combined area of 20CrNiMo alloy

Author:

Liu Guanglei12ORCID,Xue Wenchao1ORCID,Cao Yuhao1,Li Zhiqiang1,Sun Xiaoxuan1,Xu Fuhai1,Liu Haixia1,Zhou Jianzhong2

Affiliation:

1. School of Materials Science and Engineering, Jiangsu University 1 , Zhenjiang 212013, Jiangsu, China

2. School of Mechanical Engineering, Jiangsu University 2 , Zhenjiang 2120013, Jiangsu, China

Abstract

The effects of laser shock peening (LSP) on the microhardness, residual stress, and microstructure of the Ni60 cladding layer and the combined area of the 20CrNiMo alloy for high-speed rail brake disks are investigated to address the problem of coarse columnar crystals and residual tensile stress, which affect the coating–substrate bonding performance and the application development of the laser cladding repair process. The results indicate that LSP can improve the microhardness, prefabricate residual compressive stress field, and refine the microstructure of the cladding layer and the combined area. The surface hardness of the cladding layer increased by 14.55%, 34.92%, and 40.21% after the energy impact of 6, 9, and 12 J, with an impact depth of about 1.2, 2.2, and 2.5 mm, respectively. The roughness result showed that the effect is more satisfactory under the 9 J energy impact. The grain refinement is significant compared to the Clad specimen, with the average grain area at the molten layer's top, middle, and bottom reduced by 35.5%, 79.6%, and 85.8%, respectively. A residual compressive stress of −538 MPa is introduced on the surface of the clad layer, with a compressive stress value of −30 MPa at a depth of 2 mm. After the LSP, the microstructure and properties of the clad layer and the combined area are significantly improved. Still, no new phases appear and do not significantly affect the diffusion of elements between the dendrites and the dendrites.

Funder

National Natural Science Foundation of China -Youth Project

Provincial Colleges and Universities Natural Science Research Project of Jiangsu Province

Postdoctoral Research Support Project of Jiangsu Province

Senior Talents Research Startup of Jiangsu University

Publisher

Laser Institute of America

Subject

Instrumentation,Biomedical Engineering,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3